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Hydrogen and deuterium chemisorption on a single layer of graphene has been studied by path-integral
molecular-dynamics simulations. Finite-temperature properties of these point defects were analyzed in the
range from 200 to 1500 K by using a tight-binding potential fitted to density-functional calculations. On one
hand, vibrational properties of the adatoms are studied at their equilibrium positions linked to C atoms. The
vibrations display an appreciable anharmonicity, as derived from the comparison between kinetic and potential
energies, as well as between vibrational energy for hydrogen and deuterium. On the other hand, the adatom
motion has been studied by quantum transition-state theory. At room temperature, quantum effects are found to
enhance the hydrogen diffusivity on the graphene sheet by a factor of 20.
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I. INTRODUCTION

In recent years, there has been a surge of interest in
carbon-based materials. Among them, those formed by C
atoms with sp2 hybridization have been intensively studied,
as is the case of carbon nanotubes, fullerenes, and graphene.
The latter, in particular, is up to now the only real two-
dimensional crystal, with exotic electronic properties.1,2

Carbon-based systems, in general, are considered as can-
didates for hydrogen storage.3 Also, chemisorption on two-
dimensional systems, such as graphene, can be important for
catalytic processes.4 The interest on hydrogen as an impurity
in solids and on surfaces is not new and dates back to many
years. Even though this is one of the simplest impurities, a
thorough understanding of its physical properties is complex
due to its low mass and requires the combination of ad-
vanced experimental and theoretical methods.5,6

Experimental investigations on atomic-isolated hydrogen
on graphene have been so far scarce, since H is difficult to
detect. Recently, it has been clearly observed by transmission
electron microscopy and its dynamics was analyzed in real
time.7 In general, apart from its basic interest as an isolated
impurity, an important property of hydrogen in solids and
surfaces is its ability to form complexes and passivate de-
fects, which has been extensively studied in the last 20
years.5,6,8

From a theoretical viewpoint, atomic hydrogen on
graphene has been studied by several authors using ab initio
methods.4,9–13 It is generally accepted that the chemisorption
of a single hydrogen atom leads to the appearance of a
defect-induced magnetic moment on the graphene sheet,
along with a large structural distortion.9–11 However, stan-
dard electronic-structure calculations, in spite of their
quantum-mechanical character, usually treat atomic nuclei as
classical particles, and typical quantum effects as zero-point
vibrations are not directly available from the calculations.
Such quantum effects may be relevant for vibrational and
electronic properties of light impurities such as hydrogen,
especially at low temperatures.

Finite-temperature properties of hydrogen-related defects
in solids have been studied by ab initio and tight-binding

�TB� molecular-dynamics simulations. In many earlier appli-
cations of these methods, atomic nuclei were treated as clas-
sical particles.14–16 To consider the quantum character of the
nuclei, the path-integral molecular-dynamics �PIMD� ap-
proach results to be particularly suitable. In this procedure,
all nuclear degrees of freedom can be quantized in an effi-
cient way, allowing one to include both quantum and thermal
fluctuations in many-body systems at finite temperatures.
Thus, the molecular-dynamics sampling applied to evaluate
finite-temperature path integrals allows one to carry out
quantitative studies of anharmonic effects in condensed
matter.17,18

In this paper, the PIMD method is used to investigate the
role of the impurity mass on the properties of hydrogenic
point defects. We study isolated hydrogen and deuterium �D�
on a graphene sheet. Special attention has been laid upon the
vibrational properties of these impurities by considering an-
harmonic effects on their quantum dynamics. The results of
these calculations show that such anharmonic effects lead to
an appreciable deviation of the vibrational energy of the im-
purities, as compared to a harmonic approximation. Also, the
atomic diffusion is found to be enhanced with respect to the
classical limit for both H and D. Path-integral methods
analogous to that employed in this work have been applied
earlier to study hydrogen in metals17,19,20 and
semiconductors.21–24 In connection with the present work,
hydrogen has been studied inside and on carbon nanotubes
by diffusion Monte Carlo.25,26

The paper is organized as follows. In Sec. II, we describe
the computational methods employed in our calculations.
Our results are presented in Sec. III, dealing with the energy
of the defects, vibrational properties, and impurity diffusion.
In Sec. IV we summarize the main results.

II. COMPUTATIONAL METHODS

In this section we present the computational methods em-
ployed in our simulations. On one hand, in Sec. II A, we
introduce the PIMD method used to obtain equilibrium prop-
erties related to the hydrogenic defects. On the other hand, in
Sec. II B we discuss a procedure to calculate rate constants
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for impurity jumps, in the context of transition-state theory.

A. Path-integral molecular dynamics

Our calculations are based on the path-integral formula-
tion of statistical mechanics, which is a powerful nonpertur-
bative approach to study many-body quantum systems at fi-
nite temperatures. In this approach, the partition function is
evaluated through a discretization of the density matrix along
cyclic paths composed of a number L �Trotter number� of
“imaginary-time” steps.27,28 In the numerical simulations,
this discretization gives rise to the appearance of L “beads”
for each quantum particle. Then, this method exploits the
fact that the partition function of a quantum system can be
written in a way formally equivalent to that of a classical one
obtained by substituting each quantum particle by a ring
polymer consisting of L classical particles connected by har-
monic springs.17,18 Here we employ the molecular-dynamics
technique to sample the configuration space of the classical
isomorph of our quantum system �N carbon atoms plus one
impurity�. Calculations were carried out in the canonical en-
semble, using an originally developed software, which en-
ables efficient PIMD simulations on parallel computers. The
algorithms employed to integrate the equations of motion
were based on those described in the literature.29,30

The calculations have been performed within the adia-
batic �Born-Oppenheimer� approximation, which allows us
to define a potential-energy surface for the nuclear coordi-
nates. An important question in the PIMD method is an ad-
equate description of the interatomic interactions, which
should be as realistic as possible. Since employing true den-
sity functional �DF� or Hartree-Fock-based self-consistent
potentials would restrict enormously the size of our simula-
tion cell, we have derived the Born-Oppenheimer surface for
the nuclear dynamics from an efficient tight-binding effec-
tive Hamiltonian based on DF calculations.31 The capability
of TB methods to reproduce different properties of molecules
and solids was reviewed by Goringe et al.32 In particular, the
reliability of our TB Hamiltonian to describe hydrogen-
carbon interactions in carbon-based materials has been
checked in previous work,24,33 and according to those results
we expect that systematic errors in calculated diffusion bar-
riers for H in these materials are less than 0.1 eV. An advan-
tage of the combination of path integrals with electronic-
structure methods is that both electrons and atomic nuclei are
treated quantum mechanically, so that phonon-phonon and
electron-phonon interactions are directly taken into account
in the simulation.

Simulations were carried out in the NVT ensemble on a
4�4 graphene supercell of size 4a=9.84 Å with periodic
boundary conditions, containing 32 C atoms and one adatom.
For comparison, we also carried out simulations of graphene
without impurities, using the same supercell size. We have
checked that larger supercells, i.e., 5�5, give within error
bars the same results as those derived below from the 4�4
supercell. Sampling of the configuration space has been car-
ried out at temperatures between 200 and 1500 K. For a
given temperature, a typical run consisted of 2�104 PIMD
steps for system equilibration followed by 106 steps for the

calculation of ensemble-average properties. To have a nearly
constant precision in the results at different temperatures, we
took a Trotter number that scales as the inverse temperature,
so that LT=6000 K. For comparison with the results of our
PIMD simulations, we have carried out some classical
molecular-dynamics simulations with the same interatomic
interaction, which is achieved by setting L=1. The quantum
simulations were performed using a staging transformation
for the bead coordinates. Chains of four Nosé-Hoover ther-
mostats were coupled to each degree of freedom to generate
the canonical ensemble.34 The equations of motion were in-
tegrated by using the reversible reference system propagator
algorithm �RESPA�, which allows us to define different time
steps for the integration of the fast and slow degrees of
freedom.29 The time step �t associated to the DF-TB forces
was taken in the range between 0.2 and 0.5 fs, which was
found to be appropriate for the atomic masses and tempera-
tures studied here. For the evolution of the fast dynamical
variables that include the thermostats and harmonic bead in-
teractions, we used a time step �t=�t /4. More details on the
actual implementation of the simulation method can be
found elsewhere.33,35

B. Quantum transition-state theory

Classical transition-state theory �TST� is a well-
established method for calculating rate constants of infre-
quent events. An important element in this computational
method is the ratio between the probability of finding the
system at a barrier �saddle point� and at its stable configura-
tion. A quantum extension of this theory has been developed
in the context of path integrals, with the purpose of studying
the kinetics of processes involving light atoms.17,36,37 This
quantum approach allows one to relate the jump rate k to the
probability density of the center of gravity �centroid� of the
quantum paths of the jumping atom defined as

x =
1

L
�
i=1

L

xi, �1�

xi being the coordinates of the “beads” in the associated ring
polymer. Then, k is related to the ratio Pc between the equi-
librium probability of finding the centroid at a saddle point
�say x�� and at a stable site �say x0�.36,38 Namely,

k =
v̄Pc

2l
, �2�

where v̄ is a factor weakly dependent on temperature taken
to be the thermal velocity v̄=�2 / ���m� of the jumping im-
purity, and l is the distance between x0 and x�. Note that
apart of the typical quantum effects, the 1 /�m factor in v̄
will favor a faster jump rate of the lighter atoms, as in clas-
sical TST. The probability ratio Pc can be written as
exp�−��F�, �F being an effective free-energy barrier, given
by the reversible work done on the system when the impurity
centroid x moves along a path from x0 to x�,
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�F = − �
x0

x�

f�x�dx , �3�

where f�x� is the mean force acting on the impurity with its
centroid fixed on x at temperature T,

f�x� = − ��xV�R��x. �4�

Here V�R� is the potential energy, R being in our case a
3�N+1�-dimensional vector �N carbon atoms plus one impu-
rity�. The average value in Eq. �4� is taken over quantum
paths with the centroid of the impurity fixed on x at tempera-
ture T. Thus, the jump rate �a dynamical quantity� is related
to the free-energy difference �F �a time-independent quan-
tity�, so that its temperature dependence can be obtained
from equilibrium simulations without any direct dynamical
information.39 Quantum effects that may give rise to substan-
tial deviations from the classical jump rate are taken into
account within this kind of quantum TST. In this way, jump
rates for kinetic processes can be obtained for realistic highly
nonlinear many-body problems. The reliability of this
method to calculate free-energy barriers and jump rates has
been discussed in Refs. 19 and 38. In particular, it was ar-
gued that this method can be inaccurate in the presence of
asymmetric barriers at low temperatures. In our case, the
error bar of the calculated barriers is expected to be less than
the intrinsic error of the employed tight-binding potential.

In this kind of simulations, the adatom motion was re-
stricted along a reaction coordinate defined by the centroid of
the quantum path. Note for comparison that in the equilib-
rium PIMD simulations described in Sec. II A, there is no
restriction on the motion of the H �D� centroid. The force
f�x� has been evaluated at 11 points along the reaction coor-
dinate connecting the lowest-energy configuration �H linked
to a C atom� with the saddle point of the energy surface and
then the integral in Eq. �3� was calculated numerically. For
each point in the integration path, we generated 5000 con-
figurations for system equilibration and 2�104 configura-
tions for calculating the mean force at a given temperature.
More technical details can be found elsewhere.17,40,41

III. RESULTS

A. Vibrational energy

We first discuss the lowest-energy configuration for the
hydrogenic impurities on a graphene sheet, as derived from
classical calculations at T=0, i.e., point atomic nuclei with-
out spatial delocalization. The impurity binds to an C atom,
which relaxes out of the sheet plane by 0.46 Å, with a bond
distance between C and impurity of 1.17 Å. These results
are in line with those reported in the literature, and in par-
ticular with the breaking of a � bond and producing an ad-
ditional � bond, changing the hybridization of the involved
C atom from sp2 to sp3.4,10,11 Assuming the host C atoms
fixed in the relaxed geometry, one can calculate vibrational
frequencies for the impurity in a harmonic approximation.
Thus, we find for hydrogen a frequency ��=2555 cm−1 for
stretching of the C-H bond �perpendicular to the graphene
sheet� and �� =1186 cm−1 for vibrations parallel to the plane
�twofold degenerate�.

We now turn to the results of our simulations at finite
temperatures and will discuss the energy of the hydrogenic
defects. The internal energy of the system graphene plus im-
purity E�T� at temperature T can be written as

E�T� = Emin + Ev�T� , �5�

where Emin is the potential energy for the classical material at
T=0 �pointlike atoms on their equilibrium positions� and
Ev�T� is the vibrational energy of the whole system. Then,
Ev�T� can be obtained by subtracting the energy Emin from
the internal energy derived from PIMD simulations. In Fig. 1
we show the temperature dependence of the vibrational en-
ergy Ev for a 4�4 graphene supercell including an H atom
�circles�. For comparison, we also show Ev for a pure
graphene sheet �squares�. At 300 K, the vibrational energy of
graphene amounts to 6.18 eV per simulation cell, i.e., 0.19
eV/atom. As expected, Ev increases as temperature is raised
and eventually converges to the classical limit Ev

cl=3NkBT at
high T.

An interesting characteristic of the different hydrogenic
defects �H or D� is their associated vibrational energy. At a
given temperature, this energy is defined as the difference
�Ev=Ev�32C+Imp�−Ev�32C�, where “Imp” stands for H or
D. Note that �Ev defined in this way is not just the vibra-
tional energy of a given adatom on graphene but it also in-
cludes changes in the vibrations of the nearby C atoms.
Shown in Fig. 2 is the vibrational energy associated to the
hydrogenic adatoms as a function of temperature. Symbols
indicate results of PIMD simulations for H �squares� and D
�circles� and dashed lines are guides for the eyes. For com-
parison, we also present as solid lines the dependence of the
vibrational energy of a single particle in a harmonic approxi-
mation with the frequencies �� and �� given above. At low
T, the actual zero-point vibrational energy results to be
smaller than that given in the harmonic approach 	i.e., ����

+�� /2�
, but this trend changes as temperature rises. In fact,
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FIG. 1. Temperature dependence of the vibrational energy Ev of
the 4�4 graphene supercell with one hydrogen, as derived from
PIMD simulations �circles�. For comparison, we also present results
for a pure graphene supercell �squares�. Dashed lines are guides for
the eyes. Error bars are in the order of the symbol size.
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at temperatures larger than 1000 K, the vibrational energy
derived from the simulations is larger than that obtained for
the one-particle harmonic approach.

Another way of getting insight into the anharmonicity of
the defect vibrations is by looking at the ratio �Ev

H /�Ev
D

between vibrational energies of point defects for both iso-
topes. At low temperature, this ratio should converge to �2 in
the harmonic approximation, going to unity at high tempera-
tures. The results yielded by our simulations are shown in
Fig. 3, along with the one-particle harmonic expectancy. The
former lies somewhat lower than the latter in the whole tem-
perature region under consideration. In particular, at 300 K
we find �Ev

H /�Ev
D=1.364 vs a ratio of 1.394 derived in a

harmonic approximation.

PIMD simulations allow us to separate the potential �Ep�
and kinetic �Ek� contributions to the vibrational energy.42–44

In fact, Ek is related to the spatial delocalization of the quan-
tum paths, which can be obtained directly from the simula-
tions �see below�. In Fig. 4, we present the kinetic and po-
tential energies of the point defect associated to hydrogen, as
a function of temperature. Symbols indicate results of our
simulations for Ek �squares� and Ep �circles�, whereas dashed
lines are guides for the eyes. The potential energy of the
point defect is found to be clearly larger than the kinetic
energy, indicating an appreciable anharmonicity of the whole
defect �in a harmonic approach, one has Ek=Ep�. A solid line
represents the expected dependence for both kinetic and po-
tential contributions, in a harmonic approximation with the
frequencies �� and �� given above. At low temperature, we
find an appreciable change in the kinetic energy with respect
to the harmonic approach, contrary to the potential energy,
which coincides within error bars with the harmonic expect-
ancy. A qualitative understanding of this behavior can be
obtained by analyzing the energy changes obtained through
time-independent perturbation methods.22,45 Thus, assuming
a perturbed one-dimensional harmonic oscillator �with per-
turbations of x3 and x4 type� at T=0, the first-order change in
the energy is totally due to a change in the kinetic energy; the
potential energy remaining unaltered with respect to its un-
perturbed value. A similar behavior has been obtained for
hydrogen in silicon from path-integral Monte Carlo
simulations.22 The main difference is that in that case the
kinetic energy was found to increase with respect to the har-
monic value, contrary to the result obtained here for H on
graphene. This seems to depend on the details of the inter-
atomic interactions and the actual geometry of the point de-
fect under consideration, but in both cases the potential en-
ergy at low temperature is very close to the value yielded by
the harmonic approximation.

Path-integral simulations at finite temperatures describe
the quantum delocalization through paths of finite size. This
means that the average extension of the paths is a measure of
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FIG. 2. Vibrational energy �Ev of the hydrogenic defects as a
function of temperature. Results are shown for hydrogen �squares�
and deuterium �circles�. For comparison, we also present the vibra-
tional energy obtained in a harmonic approximation with frequen-
cies �� and �� corresponding to H and D �solid lines�. Dashed lines
are guides for the eyes.
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FIG. 3. Temperature dependence of the ratio �Ev
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D between
vibrational energies of hydrogen and deuterium defects. Symbols
indicate results of PIMD simulations. For comparison, we also
present the ratio expected in a one-particle harmonic approximation
�continuous line�. The dashed line is a guide for the eyes.
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FIG. 4. Temperature dependence of kinetic �squares� and poten-
tial �circles� contributions to the vibrational energy of the H defect.
A solid line represents the expectancy of a harmonic approximation
with frequencies �� and ��. Dashed lines are guides for the eyes.
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the importance of quantum effects in a given problem. One
can define a kind of quantum delocalization as the mean-
square “radius of gyration” D2 of the ring polymers associ-
ated to the quantum particle under consideration.17,44 This
means

D2 =
1

L��
i=1

L

�xi − x�2� , �6�

where x is the position of the centroid of the paths defined in
Eq. �1�, and �. . .� indicates a thermal average at temperature
T. Note that the total spatial delocalization of a particle in-
cludes an additional term, taking into account displacements
of the center of gravity of the paths. This term is the only one
surviving at high temperatures, since in the classical limit
each path collapses onto a single point. For our problem of
hydrogen on graphene, with well-defined H vibrations along
three orthogonal axes, one can define a quantum delocaliza-
tion of hydrogen along each of these directions �D�

2 and D�
2 �.

These delocalizations are displayed in Fig. 5 for vibrations
parallel �circles� and perpendicular �squares� to the graphene
plane, as derived from our PIMD simulations. D2 decreases
as the temperature is raised and the particle becomes more
“classical.” For comparison, we also show in Fig. 5 the
mean-square displacement D2 expected for harmonic oscilla-
tors of frequencies �� and ��, which can be worked out
analytically.17,44,46 The delocalization D�

2 derived from the
simulations follows closely the harmonic expectancy in the
whole temperature range considered here. However, D�

2 is
higher than its corresponding harmonic result at T	400 K.

B. Hydrogen diffusion

Hydrogen is expected to diffuse on the graphene sheet,
breaking a C-H bond and forming a new one with a nearby C
atom. To check the appearance of this kind of hydrogen
jumps, we have carried out some classical molecular-
dynamics simulations, which allow one to follow the adatom

along its trajectory on the surface. As indicated above, this
kind of classical limit is easily achieved with our PIMD code
by setting the Trotter number L=1 �one bead per atom�. At
temperatures lower than 1000 K, hydrogen jumps on the
graphene surface result to be infrequent events and are rarely
observed along a simulation run. Then, a reliable estimation
of the diffusion coefficient by this method is not possible.
Moreover, at temperatures larger than 1000 K hydrogen be-
gins to escape from the sheet, without remaining on it with
enough time for studying quantitatively the diffusion pro-
cess. This situation is remedied by analyzing the hydrogen
motion by TST and, in particular, by the quantum version
presented in Sec. II B. This procedure allows us to obtain
free-energy barriers for impurity jumping, which include cor-
rections due to the quantum character of the atomic nuclei,
and in particular the renormalization of the barriers caused
by zero-point motion. Also, phonon-assisted tunneling is in-
cluded in the calculation, since the motion of the C atoms
takes into account a full quantization of the vibrational de-
grees of freedom. The main question we address here is the
dependence of hopping rates on temperature and impurity
mass. In connection with this, there is a vast literature about
theoretical models for quantum diffusion of light particles in
solids.17,47–49 Due to the complexity of this problem, such
calculations have been typically based on model potentials
for the impurity-lattice interactions.

Here, the jump rate of the impurity between two nearest
equilibrium sites is derived from the free-energy barrier be-
tween those sites. To calculate this barrier, we first select a
continuous path from one site to the other, minimizing the
energy at the transition �saddle� point in a classical calcula-
tion �pointlike atoms� at T=0. In connection with this, it is
worthwhile noting that seemingly simple atomic jumps can
actually involve coupled barriers, as indicated in Ref. 50.
Thus, to obtain the barrier for hydrogen jumps, we consid-
ered a coupled motion of H and the nearest C atom. For the
optimal path, we obtained an energy barrier of 0.78 eV, with
the saddle point corresponding to a symmetric �bridge� con-
figuration of hydrogen between two C atoms and at a dis-
tance of 1.7 Å from the graphene plane. Once selected—the
best path—we performed finite-temperature path-integral
simulations with the centroid of H fixed on several points
along this path, as described in Sec. II B. Then, the free-
energy barrier is calculated from the mean force by using Eq.
�3�.

In Fig. 6 we present the free-energy barrier �F for adatom
diffusion between adjacent C-H bonds. Data derived from
line integration of the mean force are shown as a function of
temperature for hydrogen �squares� and deuterium �circles�.
For comparison, we also show results derived from classical
simulations �triangles�. In this plot, one notices first that �F
is higher for D than for H and even higher for the classical
limit, which in this respect may be considered as the large-
mass limit M→
.33,35 Then, we observe an appreciable de-
crease in the free-energy barrier as the impurity mass is re-
duced. Second, one observes an increase in �F as
temperature is raised in the three cases shown in Fig. 6. This
increase is smaller but not negligible, in the classical limit,
which at T→0 converges to the potential-energy barrier
given above ��Ep=0.78 eV�. At low temperature, the de-
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FIG. 5. Mean-square displacement D2 of the quantum paths for
hydrogen in directions parallel �circles� and perpendicular �squares�
to the graphene sheet. Dashed lines correspond to a harmonic ap-
proximation for vibrations with frequencies �� and ��. Error bars
of the simulations results are on the order of the symbol size.
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pendence of �F upon impurity mass is related to the change
in internal energy E of the defect complex along the diffu-
sion path, since then the entropy contribution to the free
energy becomes negligible. At 300 K, we find �F=0.79,
0.74, and 0.71 eV for the classical limit D and H, respec-
tively. This means that quantum effects renormalize the free-
energy barrier at room temperature by about 6% for D and
10% for H. This reduction in �F decreases as temperature
rises and the atoms become “more classical.” In fact, these
free-energy barriers should converge one to the other in the
high-temperature limit, which cannot be approached here
due to the onset of adatom desorption.

Shown in Fig. 7 is the rate for impurity jumps on a
graphene sheet as a function of the inverse temperature. Data
were derived from the free-energy barriers displayed in Fig.
6 by using Eq. �2�. Results are given for hydrogen �squares�,

deuterium �circles�, and classical limit �triangles�. At T
�500 K, the jump rate for hydrogen results to be larger than
that for deuterium, which in turn is higher than that found in
the classical limit, as expected from the change in effective
free-energy barrier discussed above. At 300 K, the jump rate
for hydrogen is found to be 11.6 s−1, about 20 times larger
than the value found in the classical calculation. The influ-
ence of quantum effects on hydrogen diffusivity increases as
temperature is lowered, as could be expected; but the jump
rate itself becomes very small. In fact, at 200 K, the calcu-
lated rate for hydrogen kH is less than 10−4 s−1. On the con-
trary, at high temperatures kH converges to the classical re-
sult, and the difference between both becomes unobservable
at T larger than 1000 K. At this temperature, we find kH
=2.0�109 s−1.

The diffusion barriers obtained here for H and D on
graphene are comparable to those found for hydrogen diffu-
sion on graphite. Ferro et al.51 used density-functional theory
to study various diffusion barriers in graphite. For hydrogen
diffusion on its surface, they obtained a �classical� barrier of
0.94 eV, somewhat larger than that found here at T=0 in the
classical limit.

The diffusion of H and D on solid surfaces has been stud-
ied earlier using quantum TST, employing simulations simi-
lar to those presented here. Such studies were mainly focused
on hydrogen diffusion on metal surfaces.20,52 Our results are
qualitatively similar to those obtained in these studies, with
an appreciable enhancement of the jump rate of the impurity
in comparison to a classical model. At temperatures lower
than those studied here �T	50 K�, a temperature-
independent diffusion was found on metal surfaces.20,53 This
is also a possibility for hydrogen diffusion on graphene and
remains a challenge for future research. PIMD simulations at
those temperatures would need the use of Trotter numbers L
larger than 100 that together with the interaction potentials
employed here requires computational resources out of the
scope of the present work.

IV. SUMMARY

The main advantage of PIMD simulations of hydrogen on
graphene is the possibility of calculating defect energies at
finite temperatures, including a full quantization of host-
atom motions, which are not easy to take into account from
fixed-lattice calculations and classical simulations. Isotope
effects can be readily explored, since the impurity mass ap-
pears as an input parameter in the calculations. This includes
the consideration of zero-point motion, which together with
anharmonicity may cause appreciable nontrivial effects. Our
results indicate that the hydrogen adsorbed on graphene can-
not be accurately described as a particle moving in a har-
monic potential. Even if anharmonicities of the interatomic
potential are taken into account, a single-particle approxima-
tion is questionable as a realistic description of impurity
complexes at finite temperatures. It is then necessary to treat
the defect as a many-body problem with anharmonic inter-
actions.

Ab initio theoretical techniques to calculate defect ener-
gies in solids have achieved an excellent precision in recent
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years. However, zero-point motion is a factor limiting the
accuracy of state-of-the-art techniques to predict energy
bands and total energies of solids.35 The same happens for
defect levels caused by impurities in solids, since their en-
ergy may change appreciably as the impurity mass is varied.
Here, we have illustrated how anharmonicities in the atomic
motion cause an appreciable difference between kinetic and
potential energies of the defect �about 20% for H at 300 K�
and have quantified the effect of the impurity mass on anhar-
monic shifts in the energy.

Due to the large relaxation of the nearest C atoms, hydro-
gen migration requires important motion of these atoms.
Then, an adatom jump has to be viewed as a cooperative
process involving a coupled motion of the impurity and the

nearest host atoms. This picture is similar to that described in
the literature as an “opening of a door,”54 which favors im-
purity diffusion. Thus, the quantum motion of both adatom
and C atoms helps to renormalize the diffusion barriers with
respect to the classical expectancy. At 300 K, we find a hy-
drogen diffusivity 20 times larger than that derived from
classical barriers.
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